Standard chemoradiation for glioblastoma results in progressive brain volume loss.
نویسندگان
چکیده
OBJECTIVE To investigate the effects of chemotherapy and cranial irradiation on normal brain tissue using in vivo neuroimaging in patients with glioblastoma. METHODS We used longitudinal MRI to monitor structural brain changes during standard treatment in patients newly diagnosed with glioblastoma. We assessed volumetric and diffusion tensor imaging measures in 14 patients receiving 6 weeks of chemoradiation, followed by up to 6 months of temozolomide chemotherapy alone. We examined changes in whole brain, gray matter (GM), white matter (WM), anterior lateral ventricle, and hippocampal volumes. Normal-appearing GM, WM, and hippocampal analyses were conducted within the hemisphere of lowest/absent tumor burden. We examined diffusion tensor imaging measures within the subventricular zone. RESULTS Whole brain (F = 2.41; p = 0.016) and GM (F = 2.13; p = 0.036) volume decreased during treatment, without significant WM volume change. Anterior lateral ventricle volume increased significantly (F = 65.51; p < 0.001). In participants analyzed beyond 23 weeks, mean ventricular volume increased by 42.2% (SE: 8.8%; t = 4.94; p < 0.005). Apparent diffusion coefficient increased within the subventricular zone (F = 7.028; p < 0.001). No significant changes were identified in hippocampal volume. CONCLUSIONS We present evidence of significant and progressive treatment-associated structural brain changes in patients with glioblastoma treated with standard chemoradiation. Future studies using longitudinal neuropsychological evaluation are needed to characterize the functional consequences of these structural changes.
منابع مشابه
Salvage Fractionated Stereotactic Radiotherapy with or without Chemotherapy and Immunotherapy for Recurrent Glioblastoma Multiforme: A Single Institution Experience
BACKGROUND The current standard of care for salvage treatment of glioblastoma multiforme (GBM) is gross total resection and adjuvant chemoradiation for operable patients. Limited evidence exists to suggest that any particular treatment modality improves survival for recurrent GBM, especially if inoperable. We report our experience with fractionated stereotactic radiotherapy (fSRT) with and with...
متن کاملGlioblastoma update: molecular biology, diagnosis, treatment, response assessment, and translational clinical trials
This is an exciting time in neuro-oncology. Discoveries elucidating the molecular mechanisms of oncogenesis and the molecular subtypes of glioblastoma multiforme (GBM) have led to new diagnostic and classification schemes with more prognostic power than histology alone. Molecular profiling has become part of the standard neuropathological evaluation of GBM. Chemoradiation followed by adjuvant t...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملReinduction of Bevacizumab in Combination with Pegylated Liposomal Doxorubicin in a Patient with Recurrent Glioblastoma Multiforme Who Progressed on Bevacizumab/Irinotecan
Glioblastoma multiforme (GBM) carries a dismal prognosis despite the current standard of multimodality treatments. Recent studies showed promising results to a regimen consisting of a VEGF inhibitor, (bevacizumab) and a topoisomerase I inhibitor (irinotecan) [BI] in recurrent GBM. However, those patients with GBM who progress on BI will succumb to their disease generally in a very short period ...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurology
دوره 85 8 شماره
صفحات -
تاریخ انتشار 2015